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1 Motivation and derivation

This is a self-contained derivation of the χ2 probability distribution function
(pdf) along with explanations of how to calculate its cumulative values. I find
it distasteful being referred to this book or that book and constantly being given
a result to take at face value: the raison d’être for this document. It should be
completely accessible to anyone who knows calculus.

The Gaussian or normal pdf is ubiquitous. The Central Limit Theorem
explains its frequent utility even when it is not the fundamental distribution of
a given statistical problem. Consider the joint pdf of N Gaussian variables.

dP =
N∏
i=1

dxi√
2πσ2

i

exp
[
− (xi − xi)2

2σ2
i

]
(1)

Substitute yi = (xi − xi)/σi.

dP =
N∏
i=1

dyi√
2π

exp
[
−y

2
i

2

]
(2)

This N -dimensional pdf in Cartesian coordinates may also be expressed in N -
dimensional spherical coordinates.

dP =
1

(2π)N/2
rN−1drdΩN−1 exp

[
−r

2

2

]
(3)

In this notation, dΩN−1 represents an infinitesimal solid angle on the surface of
a sphere in N dimensions. Also, r2 defines χ2:

r2 =
N∑
i=1

(xi − xi)2

σ2
i

≡ χ2 (4)

The distribution with respect to χ2 is achieved by the substitution t = χ2.

dP

dt
=

ΩN−1

2(2π)N/2
tN/2−1 exp(−t/2) (5)
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This concludes the derivation of the distribution. See Section 4 and Equation 29
for the value of ΩN−1. Inclusion of this result gives the concrete form of the χ2

pdf.
dP

dt
=

tN/2−1

2N/2Γ(N/2)
exp(−t/2) (6)

If the factor Γ(N/2) in the denominator is confusing, Section 5 gives the defini-
tion of the Gamma Function.

2 The mean, mode and asymptotic behavior of
the χ2 pdf

Now let’s calculate the expectation value of χ2.

t =
∫ ∞

0

dtt
dP

dt
=
∫ ∞

0

dt
tN/2

2N/2Γ(N/2)
exp(−t/2) (7)

A canonical form for Γ(z) follows from the substitution z = t/2.

t =
∫ ∞

0

2dz
zN/2

Γ(N/2)
exp(−z) = 2

Γ(N/2 + 1)
Γ(N/2)

(8)

Integration by parts once on the definition for Γ(z) given in Section 5 immedi-
ately shows Γ(z + 1) = zΓ(z). This gives the expectation value.

t = 〈χ2〉 = N (9)

The mode of the χ2 pdf, where the probability is maximum, can be found
by setting its derivative equal to zero. The functional dependence can be fully
stuffed into the exponent.

dP

dt
∝ exp[f(t)] = exp [(N/2− 1) ln t− t/2] (10)

The derivative of the function in the exponent is f ′ = (N/2− 1)/t− 1/2. Hence
the most probable value is χ2 = N − 2.

The mode and mean of the distribution give a sort of bull’s eye for test
statistics. But the width and shape of the distribution around the mode varies.
It is worth quickly mentioning the behavior of the distribution for large N .
Taking another derivative of the function in the exponent to make a Taylor
expansion, one finds

f ′′ = −N/2− 1
t2

= −1
2

N − 2
(N − 2)2

= − 1
2(N − 2)

(11)

This means that to leading order for large N , the distribution behaves as a
Gaussian function centered at N − 2 with σ =

√
2(N − 2) ≈

√
2N .
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3 Calculating the cumulative χ2 distribution

When using the value of χ2 to test a statistical hypothesis, it is useful to consider
the cumulative distribution for χ2 given the number of degrees of freedom. An
integral is necessary in this case.

P =
∫ χ2

0

dt
tN/2−1

2N/2Γ(N/2)
exp(−t/2) (12)

This integral takes a simple, familiar form (well known by those who know it
well) if one substitutes z = t/2.

P =
∫ χ2/2

0

dz
zN/2−1

Γ(N/2)
exp(−z) (13)

Aside from the gamma function, this expression for P is a ringer for the partial
gamma function:

γ(a, x) ≡
∫ x

0

dzza−1 exp(−z) (14)

All is well in the world of pdfs and cumulative pdfs, since γ(a, x) → Γ(a) as
x → ∞. So the cumulative χ2 distribution is given by the ratio of a partial
gamma function to a gamma function.

P =
γ(N/2, χ2/2)

Γ(N/2)
(15)

Now the problem is how to calculate the partial gamma function. Useful
series expansions for γ(a, x) are obtained from integration by parts. Using the
formula

∫
udv = [uv]−

∫
vdu and taking exp(−z) as u yields the following result.

γ(a, x) =
∫ x

0

dzza−1 exp(−z) =
[
za

a
exp(−z)

]x
0

−
∫ x

0

dz
za

a
[− exp(−z)] (16)

A pattern emerges with further integration to give a series expansion.

γ(a, x) = exp(−x)
xa

a

[
1 +

x

a+ 1
+

x2

(a+ 1)(a+ 2)
+ · · ·

]
(17)

This series converges quickly if x is comparable with or smaller than a. For
large values of x, it will still converge but slowly, since the terms in the series
will be significant until the (a+ n) bit in the denominator grows larger than x
to make the contribution become small.

An expansion that converges quickly for large values of x can be obtained
by changing the limits on the integral and integrating by parts with exp(−z)dz
taken to be dv.

Γ(a, x) =
∫ ∞
x

dzza−1 exp(−z) =
[
−za−1 exp(−z)

]∞
x
−
∫ ∞
x

dz(a−1)za−2[− exp(−z)]

(18)
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This expression uses Γ(a, x) instead of γ(a, x) because the limits of integration
have changed. Note that (Γ(a, x) +γ(a, x))/Γ(a) = 1, so it is easy to get γ(a, x)
from Γ(a, x). This series features x in the denominator instead.

Γ(a, x) = exp(−x)xa
[

1
x

+
a− 1
x2

+
(a− 1)(a− 2)

x3
+ · · ·

]
(19)

This series is tricky, because if a is not an integer then the numerator will
eventually explode. But if x � a it converges very quickly before the a terms
in the numerator become an issue.

These two series suffice to calculate the cumulative χ2 distribution for all
values of x and a. There is still a potential pitfall during computation because
exp(−x) can be very small and xa can be very large. There is a simple solution,
which is to start with the logarithms. Everything will be normalized by Γ(a) in
the end, so consider the following logarithm.

ln
[

exp(−x)xa

Γ(a)

]
= −x+ a lnx− ln(Γ(a)) (20)

It is not at all inconvenient to do this, because most modern programming
languages have math libraries which include a function that returns ln(Γ(z)).
There are routines that can be found to do this, too. The three terms together
will yield a finite value when exponentiated.

4 The solid angle of an N-dimensional sphere

I first learned this trick from a homework problem in Professor Larry Yaffe’s
graduate E&M class at the University of Washington in 2001. Starting with a
Gaussian, the goal is to compute this integral.

I =
∫ ∞
−∞

dx exp
(
−x

2

2

)
(21)

One integral could never be enough, so let’s make it two.

I2 =
∫ ∞
−∞

∫ ∞
−∞

dxdy exp
(
−x

2 + y2

2

)
(22)

Now we transform to cylindrical coordinates.

I2 =
∫ ∞

0

rdr

∫ 2π

0

dφ exp
(
−r

2

2

)
= 2π

∫ ∞
0

rdr exp
(
−r

2

2

)
(23)

One substitution makes this integral a cinch. Trying u = r2, one finds

I2 = 2π
∫ ∞

0

du

2
exp(−u/2) = 2π (24)
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So that is an easy way to find the integral of a Gaussian (or rather, the normal-
ization) I =

√
2π. There is no need to bother with a σ because a very simple

substitution takes care of it.
Now we boldly consider the integral of N Gaussian distributions.

IN =
N∏
i=1

∫ ∞
−∞

dxi exp
(
−x

2
i

2

)
= (2π)N/2 (25)

This integral may also be expressed in N -dimensional spherical coordinates.

IN =
∫
drrN−1dΩN−1 exp

(
−r

2

2

)
(26)

The same u = r2 substitution gives the integrand the form of a gamma function.

IN = ΩN−1

∫
du

2
uN/2−1 exp(−u/2) (27)

To make it plain as day for my simple mind, I put t = u/2 and find

IN = ΩN−12N/2−1

∫
dttN/2−1 exp(−t) = ΩN−12N/2−1Γ(N/2) (28)

Comparison of the two different methods gives the following solution for ΩN−1.

ΩN−1 =
2πN/2

Γ(N/2)
(29)

5 The Gamma Function

The Gamma Function is a generalized version of the factorial function. One
definition of it is:

Γ(z) =
∫ ∞

0

dttz−1 exp(−t) (30)

Using integration by parts it is easy to show that if z is an integer, Γ(z) = (z−1)!.

6 Books that annoyed me into writing this doc-
ument

I will not list them and sufficient justification may be that paper is precious,
but for some reason (a personality fault, presumably) my ratio of skepticism to
faith is similar regardless of what I’m reading, whether it be a technical text or
the Bible, the Koran, the Talmud, . . . whatever.
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